Article Text

other Versions

PDF
Reporting guidelines for health care simulation research: Extensions to the CONSORT and STROBE statements
  1. Adam Cheng1,
  2. David Kessler2,
  3. Ralph Mackinnon3,4,
  4. Todd P Chang5,
  5. Vinay M Nadkarni6,
  6. Elizabeth A Hunt7,
  7. Jordan Duval-Arnould7,
  8. Yiqun Lin8,
  9. David A Cook9,10,
  10. Martin Pusic11,
  11. Joshua Hui12,
  12. David Moher13,
  13. Matthias Egger14,
  14. Marc Auerbach15
  15. for the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE) Reporting Guidelines Investigators
    1. 1KidSIM-ASPIRE Research Program, Section of Emergency Medicine, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
    2. 2Columbia University College of Physicians and Surgeons
    3. 3Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust
    4. 4Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
    5. 5Children's Hospital Los Angeles, University of Southern California
    6. 6The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine
    7. 7Johns Hopkins University School of Medicine
    8. 8Alberta Children's Hospital, Cumming School of Medicine, University of Calgary
    9. 9Multidisciplinary Simulation Center, Mayo Clinic Online Learning
    10. 10Division of General Internal Medicine, Mayo Clinic College of Medicine
    11. 11Institute for Innovations in Medical Education, Division of Education Quality & Analytics, NYU School of Medicine
    12. 12Department of Emergency Medicine, David Geffen School of Medicine at UCLA
    13. 13Ottawa Methods Centre, Clinical Epidemiology Program, Ottawa Hospital Research Institute
    14. 14Institute of Social and Preventive Medicine, University of Bern
    15. 15Department of Pediatrics, Section of Emergency Medicine, Yale University School of Medicine
    1. Correspondence to Dr Adam Cheng, KidSIM-ASPIRE Research Program, Section of Emergency Medicine, Department of Pediatrics, University of Calgary, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, Alberta, Canada T3B 6A8; chenger{at}me.com

    Statistics from Altmetric.com

    Introduction

    Simulation has seen growing use in health care as a ‘tool, device and/or environment (that) mimics an aspect of clinical care’1 in order to improve health care provider performance, health care processes and, ultimately, patient outcomes.1–5 The use of simulation in health care has been accompanied by an expanding body of simulation-based research (SBR) addressing educational and clinical issues.6–15 Broadly speaking, SBR can be broken down into two categories: (1) research addressing the efficacy of simulation as a training methodology (ie, simulation-based education as the subject of research); and (2) research using simulation as an investigative methodology (ie, simulation as the environment for research).16 ,17 Many features of SBR overlap with traditional clinical or educational research. However, the use of simulation in research introduces a unique set of features that must be considered when designing the methodology, and reported when publishing the study.16–19

    As has been shown in other fields of medicine,20 the quality of reporting in health professions education research is inconsistent and sometimes poor.1 ,11 ,21–23 Systematic reviews in medical education have quantitatively documented missing elements in the abstracts and main texts of published reports, with particular deficits in the reporting of study design, definitions of independent and dependent variables, and study limitations.21–23 In research specific to simulation for health care professions education, a systematic review noted many studies failing to ‘clearly describe the context, instructional design or outcomes’.1 Another study found that only 3% of studies incorporating debriefing in simulation education reported all the essential characteristics of debriefing.11 Failure to adequately describe the key elements of a research study impairs the efforts of editors, reviewers and readers to critically appraise strengths and weaknesses24 ,25 or apply and replicate findings.26 As such, incomplete reporting represents a limiting factor in the advancement of the field of simulation in health care.

    Recognition of this problem in clinical research has led to the development of a growing number of reporting guidelines in medicine and other fields, including the Consolidated Standards of Reporting Trials (CONSORT) statement for randomised trials,27–30 the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) statement for observational studies31 ,32 and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement,33–35 among more than 250 others.36 Transparent reporting of research allows readers to clearly identify and understand ‘what was planned, what was done, what was found, and what conclusions were drawn’.31 In addition to these statements, experts have encouraged37 and published extensions to existing statements that focus on specific methodological approaches38 ,39 or clinical fields.40 ,41 In this study, we aimed to develop reporting guidelines for SBR by creating extensions to the CONSORT and STROBE statements specific to the use of simulation in health care research. These reporting guidelines are meant to be used by authors submitting manuscripts involving SBR, and to assist editors and journal reviewers when assessing the suitability of simulation-based studies for publication.

    Methods

    The study protocol was reviewed by the Yale University Biomedical Institutional Review Board and was granted exempt status. We conducted a multistep consensus process based on previously described steps for developing health research reporting guidelines.42 These steps involved (1) developing a steering committee; (2) defining the scope of the reporting guidelines; (3) identifying a consensus panel; (4) generating a list of items for discussion; (5) conducting a consensus meeting; and (6) drafting reporting guidelines and an explanation and elaboration document.

    Development of the steering committee

    A steering committee was formed consisting of 12 members with expertise in simulation-based education and research, medical education research, study design, statistics, epidemiology and clinical medicine. The steering committee defined the scope of the reporting guidelines, identified participants for the consensus process, generated a premeeting survey, planned and conducted the consensus meeting and, ultimately, drafted and refined the final version of the reporting guidelines and the explanation and elaboration document.

    Defining the scope of the reporting guidelines

    To clarify the scope of the reporting guideline extensions, we defined simulation as encompassing a diverse range of products including computer-based virtual reality simulators, high-fidelity and static manikins, plastic models and task trainers, live animals, inert animal products, human cadavers and standardised or simulated patients (ie, individuals trained to portray a patient). Our definition excluded research using computational simulation and mathematical modelling, as the guidelines were developed for research using human participants, either as learners or health care providers.1 The steering committee determined to create reporting guidelines encompassing two categories of SBR: (1) studies evaluating simulation for educational use; and (2) studies using simulation as investigative methodology.16 We identified the CONSORT28 and STROBE31 ,32 statements as reflecting the current reporting standards in health care research and aimed to develop extensions of these two statements for quantitative SBR. The CONSORT statement and extensions were developed for randomised trials, and the STROBE statement and extensions were developed for observational studies (cohort, case-control and cross-sectional study designs). Our guideline extensions are not intended for qualitative research, mixed-methods research or for validation studies.

    Identification of consensus panel participants

    The steering committee aimed to identify a consensus group with a broad range of expertise in SBR, including experience in conducting single and multicentre simulation-based studies, expertise in educational research, statistics, clinical epidemiology and research methodology, and with varying clinical backgrounds. We invited the editor-in-chief and editorial board members of three health care simulation journals: Simulation in Healthcare, BMJ Simulation & Technology Enhanced Learning and Clinical Simulation in Nursing, and editorial board members from two medical education journals: Medical Education and Advances in Health Sciences Education. In total, 60 expert participants were invited to complete the online survey.

    Generating a list of items for discussion

    Prior to the consensus meeting, we surveyed the expert participants via a premeeting survey (http://www.surveymonkey.com) to identify items in the CONSORT and STROBE statements that required an extension for SBR. The survey included all items from the CONSORT and STROBE statements and was pilot tested among steering committee members before being posted online. Participants were asked to provide suggested wording for the items they identified as requiring an extension. Participants were also given the option of suggesting new simulation-specific items for the CONSORT and STROBE statements. On the basis of methods previously used to develop extensions to the CONSORT statement,40 we used a cut-off of endorsement by at least one-third of respondents to identify high-priority items for discussion during the consensus meeting.

    Consensus meeting

    A 5 h consensus conference was conducted in January 2015 in New Orleans, USA, during the annual International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE) meeting. The initial 60 consensus panel participants were invited to attend the consensus conference as well as INSPIRE network members (ie, clinicians, researchers, educators, psychologists, statisticians and epidemiologists). The INSPIRE network is the world's largest health care simulation research network with a proven track record of conducting rigorous simulation-based studies in health care.43–50

    The results of the online survey were circulated to each member of the steering committee, who were then assigned to review specific items from the CONSORT and STROBE statements based on their expertise. The consensus meeting started with a brief didactic presentation reviewing the CONSORT and STROBE statements, followed by a description of the study objectives and consensus process. In small groups, each steering committee member led a discussion with four or five individuals tasked with determining if a simulation-specific extension was required for their assigned items, and if so, to recommend wording for the extension. Consensus panel participants were evenly distributed among small groups and specifically assigned to review items based on their area of expertise. High-priority items were discussed at length, but all other checklist items were also discussed in the small groups.

    Following small group discussion, the recommended simulation-specific extensions for the CONSORT and STROBE statements were presented to the entire group of participants. Each proposed extension was discussed before recommended wording was established. Minutes from the small and large group discussions were used to inform the development of the explanation and elaboration document.42

    Drafting reporting guidelines

    The proposed extensions were circulated for comment among all meeting participants and consensus panel participants who could not attend the meeting. The steering committee used the comments to further refine the extension items. To evaluate these items in practice, four members of the steering committee independently pilot tested the CONSORT and STROBE statements with simulation-specific extensions. They used two published SBR studies (ie, one for each type of SBR), while ensuring one study was a randomised trial and the other an observational study. Feedback from pilot testing informed further revisions. The final reporting guidelines with extensions were circulated to the steering committee one last time to ensure the final product accurately represented discussion during and after the consensus conference. An explanation and elaboration document was developed by the steering committee to provide further detail for each item requiring a simulation-specific extension.42

    Results

    Premeeting survey

    There was a 75% response rate for the survey, with 45 of the 60 participants completing the entire survey. An additional 12 (20%) other participants partially completed the survey. Of the 57 participants who responded to the survey, 17 were medical journal editors or editorial board members, 24 had advanced degrees (master's degree, PhD), 16 with advanced degrees in medical education or educational psychology, 6 were nurses, 1 was a psychologist and 54 were physicians (representing anaesthesiology, critical care, emergency medicine, paediatrics and surgery). Of the three participants who did not complete the survey, two were physicians and one was a scientist. The results of the survey are described in online supplementary Digital Content (see supplementary table, Digital Content 1, Survey Responses).

    Consensus meeting

    In total, 35 consensus panel participants who completed the premeeting survey attended the consensus conference. An additional 30 attendees were INSPIRE network members. Of the 65 total attendees at the consensus conference, 12 were medical journal editors or editorial board members, 18 had advanced degrees (master's degree, PhD), 4 were nurses, 1 was a psychologist and 60 were physicians (representing anaesthesiology, critical care, emergency medicine, paediatrics and surgery).

    Eleven simulation-specific extensions were recommended for the CONSORT statement: item 1 (title and abstract), item 2 (background), item 5 (interventions), item 6 (outcomes), item 11 (blinding), item 12 (statistical methods), item 15 (baseline data), item 17 (outcomes and estimation), item 20 (limitations), item 21 (generalisability) and item 25 (funding). Participants agreed upon the importance of describing the rationale for and design of the simulation-based intervention. As many simulation-based studies use assessment tools as an outcome measure, participants thought it was important to report the unit of analysis and evidence supporting the validity and reliability of the assessment tool(s) when available. In the Discussion section, participants thought it was important to describe the limitations of SBR and the generalisability of the simulation-based outcomes to clinical outcomes (when applicable). Participants also agreed it was important to identify the simulator brand used in the study and if conflict of interest for intellectual property existed among investigators. The group did not feel that modifications to the CONSORT flow diagram were required for SBR. See table 1 for CONSORT extensions for SBR.

    Table 1

    Simulation-based research extensions for the CONSORT statement

    Ten extensions were drafted for the STROBE statement: item 1 (title and abstract), item 2 (background/rationale), item 7 (variables), item 8 (data sources/measurement), item 12 (statistical methods), item 14 (descriptive data), item 16 (main results), item 19 (limitations), item 21 (generalisability) and item 22 (funding). A similar emphasis was placed on the importance of describing all simulation-specific exposures, confounders and effect modifiers, as was discussed for the CONSORT. Other extensions for the STROBE were under similar categories as the proposed extensions for the CONSORT. See table 2 for STROBE extensions for SBR.

    Table 2

    Simulation-based research extensions for the STROBE statement

    For the CONSORT and STROBE statements, extensive discussion occurred in the consensus meeting related to the educational intervention and controlling for simulation-specific variables that pose as potential threats to the internal validity of simulation studies. A group of consensus panel participants with expertise in simulation-based education and instructional design used their knowledge of educational theory, existing educational research guidelines51 and systematic reviews of SBR1 ,5–8 ,11 to address this issue (table 3). Table 3 offers an additional checklist of key elements specific to SBR, for item 5 (interventions) on the CONSORT statement and item 7 (variables) on the STROBE statement, that should be reported for all simulation studies, for both the intervention and control groups (if applicable).

    Table 3

    Key elements to report for simulation-based research

    In modelling the explanation and elaboration document after other similar documents published in conjunction with reporting guidelines,28 ,32 we provide a specific example for each item requiring a new extension coupled with the background and rationale for including that information for that item. We encourage readers to refer to the explanation and elaboration document to seek further detail about the nature and type of recommended reporting for each new extension (see text, online supplementary Digital Content 2, Explanation and Elaboration of the Simulation-Specific Extensions for the CONSORT and STROBE Statements).

    Discussion

    We have developed reporting guidelines for SBR by creating extensions to the CONSORT28 and STROBE31statements. These new extensions were developed via a consensus building process with multiple iterative steps involving an international group of experts with diverse backgrounds and expertise. By creating extensions to the CONSORT and STROBE statements that can be applied to studies in both categories of SBR, we have developed reporting guidelines that are applicable to the majority of studies involving simulation in health care research. To further assist authors in reporting SBR studies, we have published an explanation and elaboration document as an appendix that provides specific examples and details for all the new simulation-specific extensions for the CONSORT and STROBE statements.

    The CONSORT and STROBE statements with accompanying SBR extensions are meant to serve as a guide to reporting. As with other CONSORT and STROBE statements, the items are not meant to ‘prescribe the reporting… in a rigid format’, but rather the ‘order and format for presenting information depends on author preferences, journal style, and the traditions of the research field’.28 ,31 We encourage authors to refer to the explanation and elaboration document that provides details regarding specific elements related to individual items that should be reported for SBR. The use of reporting guidelines can have positive effects on various health care simulation stakeholders, including funders of SBR and those applying for funding (ie, use as a template for grant applications), educators (ie, use as a training tool) and students (ie, use to develop protocols for coursework or research).33 The application of these reporting guidelines will help to enhance the quality of reporting for quantitative SBR and assist journal reviewers and editors when faced with assessing the strengths and weaknesses of simulation-based studies in health care.24 ,52 ,53 We encourage journals publishing SBR to consider endorsing the simulation-specific extensions for the CONSORT and STROBE statements and adding these to their ‘Instructions for Authors’.

    SBR has several unique factors that prompted us to develop simulation-specific extensions for the CONSORT and STROBE statements. First, there are a wide variety of simulators and simulation modalities available for use in research.16 This, coupled with a plethora of instructional design features in simulation-based educational research, makes describing the simulation intervention a critically important component of any educational study involving simulation (table 3).6 ,8 ,19 Second, SBR provides opportunity for the investigator to standardise the simulated environment and/or simulated patient condition. Standardisation of the environment and patient condition allows the investigator to account for many of the potential threats to internal validity that are associated with simulation. Clear reporting of standardisation strategies helps the reader understand how the independent variable was isolated (table 3).16 Third, many simulation studies involve capturing outcomes from a variety of data sources (eg, observation, video review, simulator data capture). When assessment instruments are used (eg, expert raters assessing performance), it is imperative to discuss the psychometric properties of these instruments.5 Existing guidelines fall short in this regard, and these new guidelines help to address this issue. Last, simulation-based studies assessing outcomes in the simulated environment only (eg, clinical performance) should attempt to provide evidence to support how the findings in the simulated environment translate to a valid representation of performance in the real clinical environment.3 By doing so, authors help to convey the relevance and importance of their findings.

    Limitations

    Our consensus process has several limitations. Although we had a 75% response rate for our survey, an additional 20% of participants only partially completed the survey. This may have potentially introduced a selection bias, although the survey represented only one step in our consensus building process. We include a wide variety of experts in our consensus meeting, but many of them had a paediatric clinical background. We minimised this potential bias by ensuring that each breakout group had at least one expert participant with a background outside of paediatrics. Furthermore, the principles of SBR are common across specialties and professions, and INSPIRE network members represent researchers who are recognised internationally for being leaders in SBR. We based our reporting guidelines on the CONSORT and STROBE guidelines developed by clinical researchers. Other guidelines could have been used as a starting point such as the American Educational Research Association (AERA) standards developed in 2006.54 Our logic was to start with reporting guidelines that were applicable to all types of research, thus providing us more flexibility in generating extensions for both types of SBR. Cross-checking against the AERA guideline does not reveal areas we might have missed. While we tried to develop reporting guidelines for all types of SBR, we recognise there may be specific types of research that may require new items or different extensions. For example, studies designed to evaluate the validity of simulation-based assessments vary in their reporting requirements. The STAndards for Reporting of Diagnostic accuracy (STARD) statement55 addresses these points, and a recent review operationalised these standards and applied them to SBR.56 Other reporting guidelines that might be amenable for simulation-specific extensions include the COnsolidated criteria for REporting Qualitative research (COREQ),57 and the Standards for QUality Improvement Reporting Excellence (SQUIRE)58 guidelines for reporting quality improvement studies. As the field of SBR grows, the simulation-specific extensions for the CONSORT and STROBE statements may need to be revised or refined. We encourage authors, reviewers and editors to visit our website (http://inspiresim.com/simreporting/) and provide feedback that will be used to inform subsequent revisions to these reporting guidelines.

    Conclusions

    The unique features of SBR highlight the importance of clear and concise reporting that helps readers understand how simulation was used in the research. Poor and inconsistent reporting makes it difficult for readers to interpret results and replicate interventions, and hence less likely for research to inform change that will positively influence patient outcomes. The use of standardised reporting guidelines will serve as a guide for authors wishing to submit manuscripts for publication, and in doing so, draw attention to the important elements of SBR and ultimately improve the quality of simulation studies conducted in the future.

    Acknowledgments

    The principal investigator AC had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. AC, DK, RM, TPC, VMN, EAH, JD-A, DAC, MP, JH and MA participated in study design, the consensus building process, and drafting and revising the manuscript and approving the final version of the manuscript for publication. YL, DM and ME contributed to interpretation of data, critically revising the manuscript for intellectual content and approving the final version of the manuscript. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy of the work are appropriately resolved.

    References

    View Abstract

    Footnotes

    • Collaborators INSPIRE Network Reporting Guideline Working Group: Dylan Bould, MBChB, MRCP, FRCA, Med, University of Ottawa, dylanbould@gmail.com; Ryan Brydges, PhD, University of Toronto, r.brydges@gmail.com; Michael Devita, MD, FCCM, FACP, Harlem Hospital Center, mdevita06@gmail.com; Jonathan Duff, MD, MEd, University of Alberta, jon.duff@albertahealthservices.ca; Sandeep Gangadharan, MD, Hofstra University School of Medicine, gangadsa@gmail.com; Sharon Griswold-Theodorson, MD, MPH, Drexel University College of Medicine, Sharon.griswold-theodorson@drexelmed.edu; Pam Jeffries, PhD, RN, FAAN, ANEF, George Washington University, pjeffries@gwu.edu; Lindsay Johnston, MD, Yale University School of Medicine, Johnston.lindsayc@gmail.com; Suzan Kardong-Edgren, PhD, RN, ANEF, CHSE, Robert Morris University, kardongedgren@rmu.edu; Arielle Levy, MD, MEd, University of Montreal, arielle.levy007@gmail.com; Lori Lioce, DNP, FNP-BC, CHSE, FAANP, The University of Alabama in Huntsville, lioceb@uah.edu; Marco Luchetti, MD, MSc, A. Manzoni General Hospital, m.luchetti@fastwebnet.it; Tensing Maa, MD, Ohio State University College of Medicine, tensing.maa@nationwidechildrens.org; William McGaghie, PhD, Northwestern University Feinberg School of Medicine, wmcgaghie@luc.edu; Taylor Sawyer, DO, MEd, University of Washington School of Medicine, tlsawyer@uw.edu; Dimitrios Stefanidis, MD, PhD, FACS, Carolinas HealthCare System, dimitrios.stefanidis@carolinashelathcare.org; Kathleen Ventre, MD, Children's Hospital Colorado, Kathleen.ventre@ucdenver.edu; Barbara Walsh, MD, University of Massachusetts School of Medicine, bwalshmd1@gmail.com; Mark Adler, MD, Feinberg School of Medicine, Northwestern University, m-adler@northwestern.edu; Linda Brown, MD, MSCE, Alpert Medical School of Brown University, lbrown8@lifespan.org; Aaron Calhoun, MD, University of Louisville, aaron.calhoun@louisville.edu; Aaron Donoghue, MD, MSCE, The Children's Hospital of Philadelphia, Donoghue@email.chop.edu; Tim Draycott, MD, FRCOG, Southmead Hospital, tdraycott@me.com; Walter Eppich, MD, MEd, Feinberg School of Medicine, Northwestern University, weppich@gmail.com; Marcie Gawel, MSN, BSN, MS, Yale University, Marcie.gawel@yale.edu; Stefan Gisin, MD, University Hospital Basel, Stefan.gisin@usb.ch; Lou Halamek, MD, Stanford University, halamek@stanford.edu; Rose Hatala, MD, MSc, University of British Columbia, rhatala@mac.com; Kim Leighton, PhD, RN, ANEF, DeVry Medical International's Institute for Research and Clinical Strategy, kleighton@devrygroup.com; Debra Nestel, PhD, Monash University, debra.nestel@monash.edu; Mary Patterson, MD, MEd, Cincinnati Children's Hospital, marydpatterson84@gmail.com; Jennifer Reid, MD, University of Washington School of Medicine, Jennifer.reid@seattlechildrens.org; Elizabeth Sinz, MD, FCCM, Penn State University College of Medicine, esinz@psu.edu; G. Ulufer Sivrikaya, MD, Antalya Training and Research Hospital, ulufers@gmail.com; Kimberly Stone, MD, MS, MA, University of Washington School of Medicine, Kimberly.stone@seattlechildrens.org; Anne Marie Monachino, MSN, RN, CPN, Children's Hospital of Philadelphia, monachino@email.chop.edu; Michaela Kolbe, PhD, University Hospital Zurich, mkolbe@ethz.ch; Vincent Grant, MD, FRCPC, University of Calgary, Vincent.grant@albertahealthservices.ca; Jack Boulet, PhD, Foundation for Advancement of International Medical Education and Research, jboulet@faimer.org; David Gaba, MD, Stanford University School of Medicine, gaba@stanford.edu; Peter Dieckmann, PhD, Dipl-Psych, Danish Institute for Medical Simulation, mail@peter-dieckmann.de; Jeffrey Groom, PhD, CRNA, Florida International University, groomj@flu.edu; Chris Kennedy, MD, University of Missouri Kansas City School of Medicine, ckennedy@cmh.edu; Ralf Krage, MD, DEAA, VU University Medical Center, r.krage@vumc.nl; Leah Mallory, MD, The Barbara Bush Children's Hospital at Maine Medical Center, mallol@mmc.org; Akira Nishisaki, MD, MSCE, The Children's Hospital of Philadelphia, nishisaki@email.chop.edu; Denis Oriot, MD, PhD, University Hospital of Poitiers, denis.oriot@gmail.com; Christine Park, MD, Feinberg School of Medicine, Northwestern University, csparkmd@gmail.com; Marcus Rall, MD, InPASS Institute for Patient Safety and Teamtraining, marcus.rall@inpass.de; Nick Sevdalis, PhD, King's College London, n.sevdalis@kcl.ac.uk; Nancy Tofil, MD, MEd, Universiity of Alabama at Birmingham, ntofil@peds.uab.edu; Debra Weiner, MD, PhD, Boston Children's Hospital, debra.weiner@childrens.harvard.edu; John Zhong, MD, University of Texas Southwestern Medical Center, john.zhong@childrens.com; Donna Moro-Sutherland, MD, Baylor College of Medicine, donnamsutherland@gmail.com; Dalit Eyal, DO, St. Christopher's Hospital for Children, dalit.eyal@drexelmed.edu; Sujatha Thyagarajan, DCH, FRCPCH, PediSTARS India, sujadoc@gmail.com; Barbara Ferdman, MD, University of Rochester Medical Center, brferdman@gmail.com; Grace Arteaga, MD, FAAP, Mayo Clinic (Rochester), arteaga.grace@mayo.edu; Tonya Thompson, MD, MA, The University of Arkansas for Medical Sciences, thompsontonyam@uams.edu; Kim Rutherford, MD, St. Christopher's Hospital for Children, kim.rutherford@drexelmed.edu; Frank Overly, MD, Alpert Medical School of Brown University, foverly@lifespan.org; Jim Gerard, MD, Saint Louis University School of Medicine, gerardjm@slu.edu; Takanari Ikeyama, MD, Aichi Children's Helath and Medical Center, taqnary@gmail.com; Angela Wratney, MD, MHSc, Children's National Medical Center, awratney@cnmc.org; Travis Whitfill, MPH, Yale University School of Medicine, travis.whitfill@yale.edu; Nnenna Chime, MD, MPH, Albert Einstein College of Medicine, nnenna_chime@yahoo.com; John Rice, PhD(c), US Department of the Navy (retired), john.rice@noboxes.org; Tobias Everett, MBChB, FRCA, The Hospital for Sick Children, tobias.everett@sickkids.ca; Wendy Van Ittersum, MD, Akron Children's Hospital, wenvan@gmail.com; Daniel Scherzer, MD, Nationwide Children's Hospital, Daniel.scherzer@nationwidechildrens.org; Elsa Vazquez Melendez, MD, FAAP, FACP, University of Illinois College of Medicine at Peoria, eluciav@uic.edu; Chris Kennedy, MD, University of Missouri Kansas School of Medicine, ckennedy@cmh.edu; Waseem Ostwani, MD, University of Michigan Health System, waseem@med.umich.edu; Zia Bismilla, MD, MEd, The Hospital for Sick Children, zia.bismilla@sickkids.ca; Pavan Zaveri, MD, MEd, Children's National Health System, pzaveri@childrensnational.org; Anthony Scalzo, MD, FACMT, FAAP, FAACT, Saint Louis University School of Medicine, scalzoaj@slu.edu; Daniel Lemke, MD, Baylor College of Medicine, dslemke@texaschildrens.org; Cara Doughty, MD, MEd, Baylor College of Medicine, cbdought@texaschildrens.org; Modupe Awonuga, MD, MPH, MRCP(UK), FRCPCH, FAAP, Michigan State University, awonuga@msu.edu; Karambir Singh, MD, Johns Hopkins University School of Medicine, ksingh14@jhu.edu; Melinda Fiedor-Hamilton, MD, MSc, Children's Hospital of Pittsburgh, fiedml@ccm.upmc.edu

    • Competing interests The authors would like to acknowledge the support of the Laerdal Foundation for Acute Medicine, who have previously provided infrastructure support for the INSPIRE network, and the Society for Simulation in Healthcare, who provided funding to cover the expenses of the consensus meeting. AC (study design, writing, editing and review of manuscript) is supported by KidSIM-ASPIRE Simulation Infrastructure Grant, Alberta Children's Hospital Foundation, Alberta Children's Hospital Research Institute and the Department of Pediatrics, University of Calgary; VMN (study design, writing, editing and review of manuscript) is supported by Endowed Chair, Critical Care Medicine, Children's Hospital of Philadelphia and the following research grants: AHRQ RO3HS021583; Nihon Kohden America Research Grant; NIH/NHLBI RO1HL114484; NIH U01 HL107681; NIH/NHLBI 1U01HL094345-01; and NIH/NINDS 5R01HL058669-10. DM (data interpretation, writing, editing and review of manuscript) is funded by a University Research Chair. Nick Sevdalis (collaborator) is funded by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South London at King's College Hospital NHS Foundation Trust. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. Sevdalis delivers safety and team skills training on a consultancy basis to hospitals in the UK and internationally via the London Safety & Training Solutions Ltd. The other authors have no other financial or conflict of interest disclosures.

    • Provenance and peer review Not commissioned; internally peer reviewed.

    Request permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.