Article Text

other Versions


3D printing materials and their use in medical education: a review of current technology and trends for the future


3D printing is a new technology in constant evolution. It has rapidly expanded and is now being used in health education. Patient-specific models with anatomical fidelity created from imaging dataset have the potential to significantly improve the knowledge and skills of a new generation of surgeons. This review outlines five technical steps required to complete a printed model: They include (1) selecting the anatomical area of interest, (2) the creation of the 3D geometry, (3) the optimisation of the file for the printing and the appropriate selection of (4) the 3D printer and (5) materials. All of these steps require time, expertise and money. A thorough understanding of educational needs is therefore essential in order to optimise educational value. At present, most of the available printing materials are rigid and therefore not optimum for flexibility and elasticity unlike biological tissue. We believe that the manipuation and tuning of material properties through the creation of composites and/or blending materials will eventually allow for the creation of patient-specific models which have both anatomical and tissue fidelity.

  • 3d printing
  • medical simulation
  • simulators
  • tissue fidelity
  • surgical training

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:

Statistics from


  • Contributors JG: literature review, data collection, 3D printing, software, materials and manuscript writing. ZLY: literature review, 3D printing, software. RM: materials and software. Richard Leask: supervision, study design, materials and manuscript review. KL: supervision, study design, surgical education, 3D printing, manuscript writing and review.

  • Funding McGill Engineering Doctorial Scholarship (JG), NSERC Discovery Grant #261938-13 (RL).

  • Competing interests None declared.

  • Provenance and peer review Not commissioned; externally peer reviewed.

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.