Flexibility in provision is essential to cater for the varying needs of trainees as they return.

Recommendations
- Modular training is popular and valued by trainees
- Communication and targeted publicity is essential
- Addressing barriers such as childcare can provide a significant boost to recruitment

SC5 PRONE POSITION VENTILATION: GUIDELINES AND CHECKLIST DEVELOPED AFTER SIMULATION TRAINING IN THE ROTHERHAM FOUNDATION TRUST
Anil Hormis, Amanda Jackson*, Rachel Dunn*, Philippa Chalk. The Rotherham Nhs Foundation Trust, Rotherham, UK
10.1136/bmjstel-2019-aspihconf.39

Background
Recent publications in the critical care have shown the positive effects of turning a ventilated patient into the prone position following a diagnosis of Adult Respiratory Distress Syndrome (ARDS) to improve oxygenation and ventilation. This can be a complicated process in a critically ill patient attached to numerous infusion pumps and a ventilator. A simulation course was developed to help train the critical care nursing, physiotherapy and medical staff on the procedure.

Summary of education programme
This was a multidisciplinary course, consisting of critical care nursing staff, senior respiratory physiotherapists, anaesthetic trainees and Consultant Intensivists. The teaching session comprised of a short power point presentation about the pathology and clinical presentation of ARDS, benefits of the prone position, physiotherapy management in the prone position, how to manage a patient in prone and a short video of how to turn a patient in this position.

The ‘proning checklist’ was introduced at this stage. Three scenarios were carried out practically in the simulation suite that involved turning and managing a mannikin in a prone position. This included a critical incident. Debriefing was carried out after each scenario covering clinical and non technical skills aspects of the scenario by the senior faculty of the course.

Results
Mean Likert scores showed:
- Aim and content of the session was clearly explained 4.93
- The simulation felt realistic 4.11
- Your knowledge and confidence has improved as a result of this session 4.80
- Adequate time was given for the debrief/discussion 4.91
- The session met with your educational needs 4.86
- You felt equipped to care for a patient in the prone position, as a result of this session 4.66

Discussion
Feedback from the sessions showed that staff felt that they were more confident to turn a patient into prone safely and how to manage a patient in this position. They also found it extremely beneficial to train in a multidisciplinary team for this.

Conclusions/Recommendations
The guidelines are now available on the Trust Intranet and the checklist has proved beneficial when preparing a patient to be turned and is available at each bedspace on the Critical Care Unit. We continue to run these sessions with new critical care staff and anaesthetics trainees and is now a mandatory course on our critical care unit.

SC6 DEVELOPMENT OF A DEDICATED SIMTECH WORKSPACE…… CPD AND ALL THAT!
1,2Jane Nicklin*, 3Alex Clark*. 1SimSupport, Reckitt, UK; 2ASPiH, Lichfield, UK; 3iRIS/TWME8 Ltd, Cirencester, UK
10.1136/bmjstel-2019-aspihconf.40

Background
The Simulation Technician Education Programme (STEP) developed collaboratively with ASPiH and Laerdal Medical UK wanted to offer additional support to simulation technicians to not only prepare their competence report application for professional registration with the Science Council but also record and review their continual professional development (CPD). ¹

iRIS, a collaborative, web-based simulation authoring platform developed by TWME8, a UK based software company, can already be accessed through one of the benefits of ASPiH membership and was therefore approached to develop a ‘SimTech workspace’ on their existing platform.²

Summary of education programme or project
The space was developed to support technician’s development, Science Council professional registration application and renewal alongside recording of their CPD. It is a resource to help prepare and refine competence reports and gain online support from an in-house Manager or an external Mentor.

It also helps technicians to better manage and record their professional development activities over time, annual appraisal and CPD evidence for professional registration renewal.

Most importantly, it is a safe place for documents, professional development logs and any conversations with your Manager or chosen Mentor.

Summary of results, benefits
Although still in its infancy, those accessing the ‘workspace’ are already seeing the benefits from the customised, dedicated area. It is personal, private, readily accessible and safe. Individuals have complete control of the resource re sharing with Mentors, line managers etc.

It is a one-stop shop for recording activity and uploading evidence, documents etc.

Conclusions and recommendations
In the future, technicians could opt to use iRIS’s original functionality for scenario development and wider communications through the discussions/forum but for now it is hoped that Technicians will use the resource to support their professional development, whilst contributing to and improving the effectiveness and efficiency of their role.

REFERENCES
2. iRIS http://iissimulationauthoring.com (Accessed 31/05/19)

SC9 RCSI SIMULATED MODEL FOR NEGATIVE PRESSURE WOUND THERAPY
Caoimhin O Conghaile*. RCSI, Dublin, Ireland
10.1136/bmjstel-2019-aspihconf.41

Background
A simulated Negative Pressure Wound Therapy (NPWT) model was created for an RCSI (Royal College of Surgeons in Ireland) Continuous Professional Development Support Scheme (CPDSS) ICU (Intensive Care Unit) course in 2019. It showed a physical representation of NPWT for training purposes. Using various materials, the simulated synthetic
developed in the RCSI Simulation & Clinical Skills Department. The model was further developed for use on alternative parts of the body.

Summary of education program or project
The model provides a visual aid for learners to interact with the basic principles of NPWT. The model was created mainly using low cost items, black/coloured foam, liquid latex, silicone, zip-lock bags, oxygen supply tubing, suction machine, watertight dressing and moldable splint material to form the desired shape of the body part. Step by step photos and notes were taken of each stage of development. These stages will make up the main body of the presentation.

Discussion
The model can be evolved to replicate NPWT on various body parts. RCSi used the model on its SimMan mannequin, but this model could be easily be used on a human surface model or as a stand-alone item.

Conclusion
This short presentation will discuss the method of producing a multi-usage NPWT simulator for educational and demonstrative scenarios.

DEVELOPING A BIOLOGICAL CHEST DRAIN MODEL FOR CLINICAL PRACTICE

Miroslav Voborsky*. Royal College Of Surgeons Dublin, Ireland, 26 York Street, Ireland

Introduction
This model was designed and created to allow postgraduate trainee specialists and interventional radiologists to practice chest drain insertion. This model allows trainees to use the surgical technique, but also the Seldinger approach. Seldinger, also known as wire technique under ultrasound guidance can be performed on the model. This adds more fidelity to this biological model. The glove filled with water simulates the lung. Pigtail Catheter can also be inserted into the pleural cavity using this biological chest drain model. This is especially beneficial to the diagnostic and procedural ultrasound training day we run for the radiology SpR trainees.

Description of the model
With the input and expertise from the surgical faculty, important steps were taken to maximize the fidelity of this model. The steps taken to get the most realistic feel of the procedure were:

- Debridement of the subcutaneous fat layer from the pork ribs allows trainees better intercostal space definition.
- Ribs are placed on the jig under the 40-degree angle, which is then placed into the plastic box specially carved for this model.
- Ioban drape is placed onto the plastic jug. Ioban drape, due to its perfect elasticity simulates the visceral pleura.
- Surgical glove filled with water is placed into the jug, right under the Ioban drape. The glove simulates the lung.
- Once the model is completed a surgical drape is placed over the ribs and the square shape window is cut out into the drape. This defines the operative field for the procedure.

Conclusion
The chest drain model has 6 intercostal spaces that allow for the 12 incisions. The sweeping technique gives the trainee assurance that they entered the correct space between the chest wall and visceral pleura. Trainees can also palpate the simulated lung. The drain is sutured in by the trainees to practice their skills in full potential. This model is used during the Core Surgical Training year 1 in our National Surgical & Clinical Skills Centre and has recently been introduced for the Core Surgical Training Year 2 blended OSCE assessments.