model was created in the RCSI Simulation & Clinical Skills Department. The model was further developed for use on alternative parts of the body.

Summary of education program or project

The model provides a visual aid for learners to interact with the basic principles of NPWT. The model was created mainly using low cost items, black/coloured foam, liquid latex, silicone, zip-lock bags, oxygen supply tubing, suction machine, watertight dressing and moldable splint material to form the desired shape of the body part. Step by step photos and notes were taken of each stage of development. These stages will make up the main body of the presentation.

Summary of results

This model can be used for various scenarios and creates a relatively realistic simulation of the NPWT in practice for a low cost and effort. This model can be adapted for use on various parts of the body as required. The adaptability of the model allows for it to be used in other courses, both within RCSI and externally. Costing comparisons between this model and the leading brand single use version were taken of each stage of development. These stages will be included in the presentation.

Discussion

The model can be evolved to replicate NPWT on various body parts. RCSI used the model on its SimMan mannequin, but this model could be easily be used on a human surface model or as a stand-alone item.

Conclusion

This short presentation will discuss the method of producing a multi-usage NPWT simulator for educational and demonstrative scenarios.

SC02 DEVELOPING A BIOLOGICAL CHEST DRAIN MODEL FOR CLINICAL PRACTICE

Miroslav Voborsky*. Royal College Of Surgeons Dublin, Ireland, 26 York Street, Ireland

10.1136/bmjstel-2019-aspihconf.42

Introduction

This model was designed and created to allow postgraduate trainee specialists and interventional radiologists to practice chest drain insertion. This model allows trainees to use the surgical technique, but also the Seldinger approach. Seldinger, also known as wire technique under ultrasound guidance can be performed on the model. This adds more fidelity to this biological model. The glove filled with water simulates the lung. Pigtail Catheter can also be inserted into the pleural cavity using this biological chest drain model. This is especially beneficial to the diagnostic and procedural ultrasound training day we run for the radiology SpR trainees.

Description of the model

With the input and expertise from the surgical faculty, important steps were taken to maximize the fidelity of this model. The steps taken to get the most realistic feel of the procedure were:

- Debridement of the subcutaneous fat layer from the pork ribs allows trainees better intercostal space definition.
- Ribs are placed on the jig under the 40-degree angle, which is then placed into the plastic box specially carved for this model.
- Ioban drape is placed onto the plastic jig. Ioban drape, due to its perfect elasticity simulates the visceral pleura.
- Surgical glove filled with water is placed into the jig, right under the Ioban drape. The glove simulates the lung.
- Once the model is completed a surgical drape is placed over the ribs and the square shape window is cut out into the drape. This defines the operative field for the procedure.

Conclusion

The chest drain model has 6 intercostal spaces that allow for the 12 incisions. The sweeping technique gives the trainee assurance that they entered the correct space between the chest wall and visceral pleura. Trainees can also palpate the simulated lung. The drain is sutured in by the trainees to practice their skills in full potential. This model is used during the Core Surgical Training year 1 in our National Surgical & Clinical Skills Centre and has recently been introduced for the Core Surgical Training Year 2 blended OSCE assessments.

SC50 'MALEFICENCE VERSUS BENEFICENCE': YOUNG ADULTS' PERSPECTIVES OF BEING CHILD SIMULATED PATIENTS

Scarlet Herbertson*. SiComm Academy, UK

10.1136/bmjstel-2019-aspihconf.43

Background

There is increasing engagement with real people within simulation based education (SBE), as simulated patients (SPs), including child SPs (cSPs). An ethical framework of engaging with cSPs has developed organically by educators and clinicians, with some input, latterly, from children (Hamilton 2017). There is a paucity of information from young adults about the personal repercussions of their involvement, as children, in SBE, hence broad judgements have been made regarding ‘maleficence and beneficence’ with limited consultation with the SPs themselves. The ASPiH standards specifically state that ‘the patient perspective is considered and demonstrated within educational planning’ - consulting with the SPs is vital.

Project description

We undertook a qualitative study exploring young adults’ views on involvement in SBE as cSPs. Inclusion criteria was for the participants to be 16 or over and to have been involved as a SP as a child (aged 15 and younger). Twelve people were now young adults, two cited lack of time, ten took part. Two focus groups were conducted which then directed the content of four skype interviews. The principles of autonomy, non-maleficence, beneficence and justice provided the context for the overall domains and the areas of discussion were informed by lived experience.

Summary of results

Participants ranged from 16–24 years and had worked as cSPs from 8–15 years. The breadth of roles: trauma, mental health, (bullying, anxiety, depression, self-harm, anger management), sexual health (early pregnancy, STD), domestic violence, child carer, HPV vaccine and Gillick competence. The range of organisations equaled to 3 HEIs, 5 Trusts, 2 fire and rescue facilities and a Royal College. The domains, with semi-structured prompts enabled detailed information about personal and group perceptions and opinions, to be collected. Initial analysis identifies an overwhelming positivity and weight towards beneficence. 7/10 have chosen to enter health professions (nursing, medicine, psychology). Confidence (with adults and peers), knowledge of health professions, ability to support others experiencing illness, a knowledge of safety and safe practices, were consistently cited, as too was being a voice for children.

Conclusions and recommendations

A unique feature of this study has been focussing on the young adults who have been cSPs. The ethics of working with cSPs has been questioned (Gamble 2016). Undue anxiety by faculty and educators, and the perceived potential of ‘maleficence’, can override the