for compression rate, chest recoil, hand placement, and for instances of applying too much pressure.

When the final prototype was complete, it was presented to the Simulation team and positive and constructive feedback was given. It was highlighted that the next BLS course in the centre would be taking place in September and that the device would be brought along to be trialled by a certified provider.

REFERENCES
1. American Heart Association (2017). American Heart Association (AHA) Require-
ment on Use of Feedback Devices in Adult CPR Training Courses [online]. Available at: http://aheart.org/network.americanheart.org/roc/groups/ahainc-public/
@wcm/@eccc/documents/downloadable/ucm_495639.pdf [Accessed 18 Apr. 2019].

SC53 USING SIMULATION-BASED EDUCATION TO SUPPORT RETURN TO WORK IN PAEDIATRICS

Ashish Patel*, Ashley Holt, Annabel Copeman, Alison Bellitt. The Royal
Wolverhampton NHS Trust, Wolverhampton, UK; Sandwell and West Birmingham Hospital
NHS Trust, Birmingham, UK

10.1136/bmjstel-2019-aspihconf.63

Background Time out of training is common for paediatric trainees. When returning back to work, trainees often feel anxious and lack confidence. As well as feeling de-skilled, there is also the emotional aspects of dealing with sick children, particularly following maternity leave. Given the recent Bawa-Garba case, anxiety amongst paediatric trainees returning to work is even greater.

The Royal College of Paediatrics and Child Health (RCPCH) indicates that returning paediatricians should be supported with a formal return to work programme. Thus, a Paediatric Return to Work Simulation Course was developed within our region to facilitate this requirement.

Summary of Education Programme All out of programme trainees are invited to attend a one-day course of high fidelity simulation, at the simulation centre at The Royal Wolverhampton NHS Trust. The course runs four times a year and is fully funded by Health Education England.

The scenarios are mapped to the RCPCH Curriculum, covering key aspects and skills of paediatric training including safeguarding, emergency management of acutely unwell children, leadership, communication and human factors.

Summary of results To date a total of 68 candidates have attended our return to work simulation course. Some trainees have attended more than one course having had more than one break in training. The course was evaluated using a questionnaire, which includes a mixture of Likert scales and free text questions. The results of the feedback was as follows:

- 100% of trainees felt the course met their learning needs and the content was appropriate for their level of training
- 100% of participants evaluated the course would change their clinical practice with nearly 60% saying it would alter their practice a great deal.

The free text comments were overwhelmingly positive with participants liking the range of scenarios, particularly the stressful situations like resuscitation, cardiac arrest and sudden infant death syndrome (SIDS). Confidence and clinical knowledge of trainees improved.

Discussions, conclusions and recommendations Return to work is an anxious time for trainees. Organisations need to have a clear programme in place to facilitate the return to training. Our course highlights that simulation can be used successfully to aid trainees to return to work. The results show that the confidence and skills of trainees improved prior to returning to work. Returning candidates clearly have felt proven benefit, attending multiple courses.

Using our programme, our recommendation is that simulation can be adapted to other specialities to ensure safe return to work nationally.

REFERENCES

SC59 CRITICAL CARE: IS THE INTENSIVE CARE UNIT APPROPRIATE FOR IN-SITU SIMULATION?

Steffan Glaze*, Alexandra Edwards, Krishna Navaneetham, Andrew Whitehead, Andrew Jacques*. Intensive Care Unit, Royal Berkshire NHS Foundation Trust, Reading, UK

10.1136/bmjstel-2019-aspihconf.64

Background The Intensive Care Unit of the Royal Berkshire Hospital, Reading, is a 17-bedded general critical care unit with over 1000 admissions per year. Since 2015, multidisciplinary in-situ simulation has been delivered approximately twice per month and is now a well-established part of the unit’s education programme. In-situ simulation continues to develop as an educational tool (Rosen et al, 2012), and has been shown to be effective in the critical care setting (Theilen et al 2017).

Summary of work In-situ simulation forms part of a weekly teaching programme on the Intensive Care Unit. Scenarios are led by a consultant intensive care physician with experience in delivering simulation education. They are supported by a member of junior medical staff working in a clinical fellow post with an emphasis on simulation and education. Doctors and nurses participate in each session, occasionally with allied health professionals. Simulation is delivered using a mannequin with monitoring in an empty clinical bed space. Participants use actual equipment and medications (with the exception of controlled drugs). Scenarios cover a broad range of topics, from high frequency events to infrequent medical emergencies (e.g. intubation of a septic patient with pneumonia, obstructed and/or displaced tracheostomy). The debris covers the clinical aspects with a strong focus on the human factors, team working and practical issues. Participants and observers are invited to provide feedback following the sessions.

Summary of results Over 70 feedback responses have been collected over the course of the programme to date. Respondents are consistently positive, agreeing that the scenarios are relevant, useful for learning and improve confidence. Free-text responses frequently referred to realism, learning about team work and the benefit of practicing infrequent emergencies. Improvements suggested included removing observers from the bed space to avoid confusion, clarity of what equipment can be used and the opportunity to improve fidelity with mock patients on the electronic patient record.

Discussion, conclusions and recommendations In-situ simulation is an acceptable and useful format for teaching in the
intensive care unit. Learning for staff covers both the clinical topic of the emergencies, as well as human factors. Future initiatives will aim to improve patient safety further by acting on latent threats identified during simulations, developing scenarios in response to safety incidents reported locally and nationally, and identifying risks associated with the physical structure of the area.

REFERENCES


Wednesday 6th November, 11.30–12.30

SC28 ‘SIMDAVER’ – A BLENDED-LEARNING PROGRAMME USING SIMULATION-BASED EDUCATION WITH CADAVERIC DISSECTION TO CONTEXTUALISE ANATOMY FOR FIRST YEAR MEDICAL STUDENTS

 background Cadaveric dissections are used to teach anatomy in the early phase of the undergraduate medical curriculum, while the learning of procedural skills is part of the later phase of the curriculum. However, the lack of clinical exposure in early phase, limits students’ ability to understand the significance of anatomical structures. Research has identified challenges in the delivery of anatomy teaching, with recommendations made to tailor learning to increase students’ preparedness to function effectively in a clinical role. 1 Simulation-Based Education (SBE) may offer a solution in providing improved improvements in hospital response to deteriorating patients, improved outcomes in intensive care and financial savings.

summary of educational programme or project ‘Simdaver’– a 12-week Special Study Module (SSM) was designed by a team of simulationists, anatomists and doctors from ICAPSS. A blended-learning approach was employed which focused on contextualising what was being taught in anatomy by using SBE to teach core procedural skills. The teaching of each skill involved three elements:

1. ‘Dissecting the Skill’: a brief lecture explained the relevant indications, complications and equipment considerations.
2. Both prosection and dissection were used on a soft-fix cadaver to identify anatomical structures of significance. Students performed elements of the skill on the cadaver with equipment used in clinical practice.
3. Technical skills practice: Repeated practice of the skill took place in the simulation laboratory where students applied their anatomical knowledge of structures to performing the learned core skills on a simulator. They received feedback on performance.

Students completed an assessment, a written reflection and a post-SSM evaluation survey.

summary of results All students (n=6) agreed that their learning was greater with this blended-learning approach and that using simulation helped improve their understanding of anatomy. Students’ written reflections identified that the module helped provide insight into the clinical significance of anatomy and motivated them to learn. There was a demand for increased simulation in the early years of the undergraduate curriculum and awareness of the importance of a safe learning environment for both students and patients. Students also reflected that the module allowed them to build confidence and work on non-technical skills in a team-based setting.

Discussion, conclusions and recommendations: SBE is an effective means of improving delivery of, and providing a clinical context to, cadaveric anatomy in undergraduate medicine.

REFERENCES


SC29 SIMULATION IN NURSING COMMUNICATION (SINC)

Sini John*, Kathryn Killicoot*, Jacqueline Driscoll, Valarie Dimmock. Homerton University Hospital Nhs Trust, London, UK

Background A Trust survey in 2017 showed a concerning decline of patient confidence and trust in nursing staff, and this coincided with a drop in nursing recruitment and retention. To investigate, a telephone survey gained a more detailed account of what negatively impacted patient experience, and what could help improve the nursing relationship.

Patients regard nurses as emotional support during an unstable period of their lives. They reported feeling more assured about their illness when they were able to interact positively with their nurse, and had a better experience of the healthcare system overall.

Therefore, the simulation department was tasked by Trust executives to design a course to improve nurse communication skills. A coping exercise revealed the main challenges faced were; dealing with angry patients and relatives, duty of candour, challenging hierarchy, safeguarding, delirium and end of life care.

Programme A course consisting of forum theatre and five challenging communication scenarios using simulated patients was designed. The course starts with forum theatre to create a non-judgemental learning environment and encourage group interaction. This is followed by immersive scenarios exploring themes from the survey and coping exercise.

Results Since March 2018, over 100 nurses have been trained. Every participant strongly agreed that the course helped boost their confidence in communicating and they also strongly agreed that simulation is a good environment for this type of learning.

Discussion There is recent evidence of increased recruitment and retention within nursing at the Trust and this course could be one of the positive driving elements. Qualitative research is being undertaken on the lasting changes to