unnecessary information requested of the examiners. Training for examiners is vital (Bani-issa et al. 2019); we focussed on standardisation and OSCE processes, along with the new electronic, simultaneous marking - a faster, safer system of OSCE scoring for academic examiners, simulated patient examiners and simulated colleague examiners.

REFERENCES

SC32 MOVING TO IN-SITU SIMULATION ON NEONATAL UNIT
Jennifer Peterson*, Ruth Gottstein, Ranganath Ranganna. St Mary’s Hospital, Manchester, UK
10.1136/bmjstel-2019-aspihconf.69

Background We have a regular weekly programme of simulation within the Neonatal Unit. These sessions involve nursing and medical staff and are well received and valued by the team. However, the sessions currently take place in an education room, rather than in-situ.

We felt that our sessions would benefit from moving to an in-situ approach as this would increase realism for participating staff, and would allow us to detect latent safety threats.

Risk assessment
1. Use of ‘real’ equipment: there have been many simulation articles reviewing the safety aspects of introducing simulation equipment, eg. equipment which may be old/obsolete/ damaged into ‘real’ clinical areas. We felt that using simulation equipment (other than the manikin) in a real clinical area would introduce an unacceptable risk of potential harm if confused or mixed up with real clinical equipment. Therefore, the equipment used in our in-situ simulation should be real equipment. This would increase the cost per simulation session, but would help identify latent safety threats of equipment and improve staff familiarity with equipment.
2. Impact on the unit: In-situ simulation has the potential to have an impact on the running of the rest of the unit if occurring in a space directly adjacent to other areas where ‘real’ patient care is happening. In our simulations, the staff involved in the sessions are rostered to attend and are freed from clinical duties. We concluded that having in-situ session within intensive care rooms would be too disruptive, but that sessions could be successfully implemented in HDU/SCBU rooms with minimal impact on patient care.
3. Impact on parental mental health: there is recent significant evidence documenting the impact of NICU on parental mental health. We would not want to exacerbate this by exposing parents to neonatal deteriorations if they were in the room that the in-situ simulation was happening. We therefore, wanted to gather parental views before implementing an in-situ programme.

Summary of education programme Parent were invited to complete a questionnaire on their views towards in-situ simulation on NICU (April-May 2019). The overwhelming majority of parents polled were strongly supportive of the plan. We have had 15 respondents so far.

We now plan to run our first session in-situ simulation at the end of the month and could present our findings at ASPiH in November.

REFERENCES

SC33 SIMULATION IN SUPPORTED RETURN TO TRAINING PEDIATRICS
Sunitha Sampath*, Yorkshire and Humber School Of Paediatrics, Rotherham, UK
10.1136/bmjstel-2019-aspihconf.70

Background Trainees take break in their training due to various reasons. Trainees who have been out of training programme feel anxious, under confident and deskilled which can lead to their underperformance thus putting patient’s safety at risk. They have reported lack of support to their return to work (AOMRC 2016). Studies have shown that supported return to work (RTW) programme helps them to transition back to their clinical activities smoothly. Simulation helps to build their competence and confidence (Kiernan 2018).

Summary of work Our school of paediatrics has very high proportion of RTW trainees due to large female proportion of trainees, family friendly environment and our efforts to support other out of programme experiences. There are around 50 (12.5%) trainees/year who are out of programme in our school and around 10–15 trainees/year as direct entrants to ST4 emphasising the need for robust programme. We estimated need for around 8 RTW training days for our trainees to meet our aims, we planned out study days, evaluation strategy and secured funding from HEE through a carefully planned business plan.

Study day used simulation training with scenarios that were mapped to RCPCH curriculum covering important areas of acute management, neonatal and safeguarding scenarios while focussing on leadership, team working, communication and human factors. All participants got the opportunity to take part in simulation and debriefing. Their simulated role and case management reflected the work and position they were returning into. Day also touched upon mentoring, peer support, resilience, mindfulness, clinical guidelines updates, changes to assessments/e-portfolios, signposting, advice and guidance. Course was also offered to the nurses acknowledging that their involvement enhances simulation training for all. The effectiveness of the training day was evaluated by the feedback forms.

Results Our first ever RTW training day received excellent feedback with 86% grading it as excellent while rest as very good. Trainees expressed improved confidence and preparedness and requested for more simulation. 100% felt it’s valuable and recommended the day to be split into two days.
where one day would concentrate on simulation including skill stations.

Conclusion Our effort to establish a good RTW training has shown that trainees really appreciate it and would like more of it gain confidence for an effective patient care. Going forwards, we envisage more simulation training, onsite child care facilities and developing VLE package. The principles of this course can be applied to all other schools with individual adaptation.

REFERENCES

SC34 VIRTUAL PATIENT TECHNOLOGY FOR EDUCATING PHARMACISTS ON PATIENT COMMUNICATION SKILLS: A SYSTEMATIC REVIEW
Charlotte Richardson*, Simon White, Stephen Chapman. Keele University, Keele, UK
10.1136/bmjstel-2019-aspihconf.71

Background Virtual patients (VPs) are a sub-type of healthcare simulation that have been underutilised in health education. Their use is increasing but, applications are varied as are designs, definitions, and evaluations. Previous reviews have been broad, spanning multiple professions and without accounting for VP design differences.

Summary of project The objective was to undertake a systematic narrative review to establish and evaluate the nature of the literature on VP use in pharmacy. This included VPs that were used to develop or contribute to communication or counselling skills, or similar, in pharmacy undergraduates, preregistration pharmacists, and qualified pharmacists.

Results Eight studies were identified using EBSCO and were assessed for quality. The eligibility criteria did not discriminate between study design or outcomes but focused instead on the design and purpose of the VP. Each study included different VP applications and outcomes. Four themes were identified from the studies: knowledge and skills (including competency and ability), confidence, engagement with learning, and satisfaction. Results favored the VP but not all studies demonstrated this statistically due to the methods used. Comparisons between this range of methods were difficult due to the inability to make direct comparisons. Despite the varied applications there were similarities in that the VPs were found to improve users’ knowledge, confidence, skills, and competency. VP potential and usability were also highlighted as advantages, but technological problems can limit use. VPs can help the transition of knowledge to practice, particularly in pharmacy undergraduate populations.

Discussion, conclusion, and recommendations VPs are an additional valuable resource to develop communication and counselling for pharmacy students; use in other pharmacy populations has not been established. Individual VP applications require evaluation to demonstrate their value as they use different designs and technologies. Multiple studies commented on a VP purpose as allowing an opportunity for practice, an already recognised advantage of VPs. Two particular benefits appeared to be that VPs can provide richly contextualised learning applied to practice, but in such as way so that the user can safely learn from mistakes. This is in line with ideas of experimental learning where the focus is on learner-driven investigations, often in pursuit of a real or artificial task. Many studies were small-scale without robust findings, consequently further in-depth research is required. This should focus on implementation into practice and user-perspectives.

REFERENCES

SC35 PAEDIATRIC IN-SITU SIMULATION CURRICULUM – BUILDING MULTI-PROFESSIONAL ENGAGEMENT FROM STUDENT TO REGISTRAR. A REPORT ON THE CONCEPT, CHALLENGES AND CAUSES FOR CELEBRATION OF THE HOMERTON PAEDIATRIC SIMULATION TEAM
Catherine Douch*, Julia Thomson, Meena Patel, Cauvery Pal, Sini John, Jacqueline Driscoll*. Homerton University Hospital, Hackney, UK
10.1136/bmjstel-2019-aspihconf.72

Background
- Embed a cultural shift in attitude to in-situ simulation through a programme that prioritises inclusivity, psychological safety and fun!
- Devise and utilise scenario’s that include learning outcomes suitable for all multi-professional team members.
- Encourage reflection on the role of human factors.
- Project description
- Our Trust actively supports in-situ simulation, employing a paediatric simulation fellow, PDN’s and paediatric simulation trained consultants.
- Simulations occur in the resuscitation bay and encourage familiarisation with rare equipment, algorithms and use of medications.
- Isim, sim junior, baby and newbie are dedicated simulation workplaces.
- Sessions run three times monthly before morning handover.
- Scenarios are inspired by recent complex patients and previous SI’s.
- Some scenarios are written or adapted by the simulation team whilst others come from our healthcare education partners (UCLP) or the ‘STAR’ app.
- Participation is incentivised through certificates and workplace based assessments.
- Sessions close with a debrief focusing on human factors and completion of the trust–wide feedback form which rates aspects of the simulation from 1 to 5 on a Likert scale.

Results
- There were 94 participants over 18 months. 53% were junior doctors, 13% nurses and 34% students. 26% had prior simulation experience.
- The feedback was overwhelmingly positive.
- When asked to rate the statement, ‘I found it a valuable learning experience within my usual work environment’, the participants mean response = 4.7 (95% Confidence Interval 4.6–4.8).