team in the emergency department in situ simulation training as this gives a more realistic perspective.

REFERENCES

P2 INTERDISCIPLINARY, INTERPROFESSIONAL IN SITU SIMULATION IN THE EMERGENCY DEPARTMENT
Emma Magowan*, Philip McClelland*, Róran Haughey, Belfast Health and Social Care Trust, Mater Emergency Department, Belfast, UK
10.1136/bmjstel-2019-aspihconf.108

Background Our Emergency Department no longer sees children routinely, however; children who present are briefly assessed at triage before being safely redirected to a paediatric department. Following several unwell paediatric attendances who required stabilisation prior to emergency transfer to another site, it was recognised our department required an update of processes and paediatric equipment.

In response, an interdisciplinary, interprofessional in situ simulation was planned.

Summary of work We engaged an anaesthetic consultant colleague as joint faculty with the ED clinical nurse educator and an ED consultant. Learning objectives were agreed by all faculty members. The In Situ Simulation was written, based on an actual patient presentation; a child with seizures requiring intubation. Following a safety pre-brief with participants and observers, the simulation was conducted in the resuscitation area in real time, including activation of the anaesthetic team. A structured debrief was conducted immediately after the simulation to identify pertinent learning and action points. These were later shared with the rest of the department.

Summary of results The simulation and debrief were well received by participants and observers as a valuable learning opportunity. Several improvements were initiated. Wall displays of emergency algorithms were updated. An easy reference cognitive aid was developed by the anaesthetic team detailing the different paediatric doses for rapid sequence intubation drugs; it is now clearly displayed in the resuscitation area. The induction drug thiopental was not available in the resuscitation cupboard as a stocked item; it was immediately added to the top up list.

Discussion and conclusions Interprofessional collaboration advances high quality patient care (WHO, 2010). This In Situ Simulation offered our interprofessional teams an opportunity to work collaboratively in a psychologically safe environment. It allowed us to test and improve our processes and to identify and mitigate latent safety threats. Significant learning points were established and recorded during the structured debrief; a crucial element of effective In Situ Simulation (Spurr et al., 2016).

Communicating these with the rest of the department and interprofessional teams via safety briefings, posters and email enabled the learning points to be shared widely.

Recommendations The faculty plan to deliver further In Situ Simulations on a range of clinical presentations to enhance interprofessional collaboration and improve patient safety in our department.

REFERENCES

P3 THE DEVELOPMENT AND IMPLEMENTATION OF A HOT DEBRIEFING TOOL WITH THE USE OF SIMULATION
Stephen Gilmartin*, John Cronin, Laura Martin, Siobhan Kenny, Nigel Salter. Health Service Executive, Dublin, Ireland
10.1136/bmjstel-2019-aspihconf.109

Background A hot debrief is a review carried out ‘there and then’ following an incident to ensure improved recall and full team participation. Several international guidelines recommend implementing a hot debriefing process to aid quality improvement and workforce morale following treatment of critically ill patients. Despite this, there are no standardised debriefing guidelines available. We aimed to use simulation scenarios to design and implement an efficient hot debriefing tool for MDT teams treating critically ill patients in our department.

Summary of project We designed common scenarios seen in our resuscitation room. The scenarios included; severe asthma, chest trauma, major haemorrhage, difficult airway, overdose, massive PE and Stroke. Participants included nursing, medical and other healthcare staff. The scenarios took place in-situ and during weekly department teaching sessions. We followed each scenario by an immediate team debrief. Participant’s feedback was recorded to help design our hot debriefing tool. We used further scenarios to introduce the tool and to make ongoing changes. Since its introduction to the department floor we have kept record of issues highlighted, made appropriate changes and given closed loop feedback to ensure ongoing department improvement.

Summary of results We have designed a two page hot debriefing tool for use immediately following treatment of critically ill patients. The tool focuses on pre briefing, ‘ABC’ technical skills, communication, documentation and equipment. Since its introduction we have made changes to team pre-briefing from ambulance control, resus equipment, lab processing, technical arrest skills and employee access to psychological support services. We have recorded qualitative feedback from staff highlighting the tool’s importance in both personal and team development.

Discussion and conclusion We have developed a concise and efficient hot debriefing tool which has led to department changes in the management of critically ill patients. The use of simulation to design the tool helped highlight key areas to include. MDT simulation scenarios ensured full department ownership and awareness of the hot debriefing process. We aim to introduce this tool hospital wide with the use of further simulation scenarios during medical team inductions.

Recommendation We recommend all emergency department to use simulation in order to design and implement hot debriefing processes.
Background Aintree Hospital is an adult tertiary centre providing care to 330,000 patients. There is a paediatric centre of excellence located 4 miles away however, despite its close proximity, acutely unwell children still present to the Emergency Department. We noted that the clinical teams managing these children may not have had recent paediatric training or practical experience, and there was a need to increase knowledge, confidence and team working in managing these challenging cases.

Summary of work We distributed a survey to identify 1) training gaps 2) previous issues faced when managing paediatrics in the emergency department and 3) difficult cases clinicians attending wanted to simulate, in order to customise the course and improve knowledge retention¹. We sought advice from the radiology department and paediatric transfer service colleagues who are attending as well as faculty, which includes our radiology and paediatrics in June 2019 and will collect feedback from delegatesdirection of flow of the simulated cases. We are piloting this and identify latent errors for evaluation².

Discussion and conclusions With guidance from the survey, we have designed paediatric scenarios that could potentially present to an adult hospital and involve the multidisciplinary emergency team. In order to improve patient safety, scenarios regarding which facilities are feasible in our location. Finally, we collaborated with the children’s hospital to devise and install a new paediatric trolley in the emergency department, which will be tested during the course.

Summary of results The survey revealed:

- Equipment and staff training were identified as obstacles hindering optimal management.
- 57% of respondents were up to date with APLS.
- 28% had managed a paediatric case in the emergency department within the last 3 years, 43% had not been involved in any cases.
- 29% of anaesthetists had anaesthetised a child within the last year, 57% within 2 years and 86% within 3 years. One respondent hadn’t anaesthetised a child in over 10 years.
- Common themes requested for scenarios included: sepsis, status epilepticus, trauma and cases using very young children/infants to provide challenging training.

Discussion and conclusions With guidance from the survey, we have designed paediatric scenarios that could potentially present to an adult hospital and involve the multidisciplinary emergency team. In order to improve patient safety, scenarios include the use of the paediatric trolley to promote familiarity and identify latent errors for evaluation³.

It has been important to involve the stakeholders in the design of this course as they have markedly influenced the direction of flow of the simulated cases. We are piloting this course in June 2019 and will collect feedback from delegates attending as well as faculty, which includes our radiology and paediatric transfer service colleagues who are attending to contribute to debrief discussions. We will repeat this course 3 times yearly and modify it based on feedback and new cases that present to our hospital.

REFERENCES
2. 2015 AHA, Advanced cardiac life support guidelines.

P4 DESIGNING AND IMPLEMENTING A BESPOKE MULTIDISCIPLINARY PAEDIATRIC EMERGENCY REFRESHER COURSE IN AN ADULT TERTIARY HOSPITAL

¹Támnín Millie*, ²Julie Geica, ³Tim Wharton, ⁴Simon Mercer. ¹Aintree University Hospital, Liverpool, UK; ²Alder Hey Hospital, Liverpool, UK

10.1136/bmjstel-2019-aspihconf.110

P5 USING SIMULATION BASED EDUCATION TO ACHIEVE PERSONAL AND EDUCATIONAL BODY NEEDS IN RENAL MEDICINE

¹Kathleen Mc Donnell*, ²David Lappin, ³Donal Reddan, ⁴Conor Judge, ⁵Dara Byrne. ¹National University Of Ireland, Galway, Galway, Ireland; ²Galway University Hospitals, Galway, Ireland; ³Saolta University Healthcare Group, Galway, Ireland; ⁴Irish Centre for Applied Patient Safety and Simulation, Galway, Ireland

10.1136/bmjstel-2019-aspihconf.111

Background Simulation Based Education (SBE) can be used to support Senior House Officers (SHOs) achieve core competencies in a safe environment. Renal emergencies are common, life threatening and many can be out of hours, leaving the SHOs to manage the patient in the absence of specialist input. Knowledge and skills in renal medicine are core topics for medical trainees as outlined by the training body. For this reason, a renal simulation workshop was designed for SHOs at University Hospital Galway who had been in post for 9 months, based on their self-identified learning needs.

Summary of work A training needs analysis, was conducted by survey prior to the workshop. Post workshop evaluation surveys evaluated if the programme addressed learners’ needs and post workshop semi-structured interviews with participants will evaluate acceptability as a method to achieving competencies.

Summary of results 37 SHOs (n = approx. 35%) responded to a pre workshop survey. 38% reported that they commonly encountered renal emergencies with 69% reporting that these occurred out of hours. Over 78% reported that they would like more training in the management of renal transplant and dialysis and 95% were interested in attending a SBE workshop.

A total of 6 SHOs who participated in the interdisciplinary designed SBE workshop responded to the post workshop questionnaire. 100% agreed or strongly agreed that they enjoyed the workshop. 100% agreed that the workshop was an effective method of teaching and learning and was relevant to their practice.

Conducting and analysing the results of the post workshop interviews is in progress.

Discussion and conclusions Conducting a needs analysis and identifying learner needs is a good way to ensure that the simulation workshop is relevant and up to date. Trainees at SHO level can recognise the importance of participating in these types of workshops to align with the 8 domains of clinical practice.

Recommendations SBE can be an effective method of training SHOs in renal medicine and in supporting them to achieve their personal and educational goals.