• Being a voluntary activity during a stressful time.
• Student anxiety about attending scenarios.
• Time clashes with other commitments due to ad-hoc timing of simulations.

Future changes could include
• Providing a smaller time frame for students to be bleeped.
• Moving to an alternative time in the course.
• Introducing these simulations as a mandatory part of the course.

In conclusion, it is possible to deliver a positive learning experience for medical students using this form of in situ simulation. Practical difficulties may be resolved by changes made in future years.

REFERENCES

A WELL-DESIGNED MULTIDISCIPLINARY DIFFICULT AIRWAY MANAGEMENT SKILLS AND DRILLS DIFFICULT AIRWAY PROGRAMME FOR ENT, ANAESTHESIOLOGY, PERI-OPERATIVE AND ENT NURSES

11,2Michelle Chorynowski*, 1Mona Thornton, 1Maya Contreras, 1Orla Young, 2Karen Malherbe, 1,2Dara Byrne. 1Irish Centre for Applied Patient Safety and Simulation, Galway, Ireland; 2Galway University Hospitals, Galway, Ireland; 3School of Medicine, NUI Galway, Galway, Ireland

Background Simulation-based training is an excellent modality to practice complex airway emergencies while avoiding any harm to patients and can be used to improve the technical and non-technical skills required for difficult airway management. It is most effective when used to train teams that include all disciplines involved in the care of these patients as human factors issues, including poor communication and teamwork, contribute to adverse outcomes in up to 40% of difficult airway cases.1

Summary of work A collaborative multidisciplinary airway simulation programme was developed by a multidisciplinary team that included ENT, Anaesthesia, Perioperative Nursing Departments and the Irish Centre for Applied Patient Safety and Simulation (ICAPSS). A two-part programme was developed that focused on addressing the learning needs of all disciplines. The first part was three complex airway scenarios completed by teams of four learners comprised of ENT and anaesthesia doctors and nurses. The second part was a technical skills workshop supported by subject matter expert feedback. Skills included were cricothyroidotomy, percutaneous tracheostomy, fibreoptic intubation, high-flow nasal oxygen therapy and rigid bronchoscopy. All disciplines attended and participated in both parts of the programme.

Summary of results Post-workshop evaluation was overwhelmingly positive.

All participants (n = 17) agreed or strongly agreed that the workshop improved their ability to use skills related to the topic and that the knowledge and skills that they learned will be useful to them in their job. All participants agreed that the workshop was enjoyable and that it addressed their learning needs.

Conclusion The multidisciplinary team simulation programme specifically highlighted individual team member roles in managing difficult airways by including members for each discipline in every part of the programme. The inclusion of both medical and nursing staff to the practical workshop equally upskilled all members in respect to airway management to ensure a better understanding of equipment and procedures and ultimately benefiting all in the event of a challenging scenario.

Recommendations The success of the programme highlights the need and the acceptability of this type of high impact training and how involving a multidisciplinary team at the development stage ensures buy-in and participation. The developers plan to deliver the programme more frequently to maintain team skills in managing difficult airway cases in a collaborative team setting.

REFERENCES

USING IN-SITU SIMULATION TO IMPROVE THE CROSS-SPECIALITY RESPONSE TO PAEDIATRIC AIRWAY EMERGENCIES IN A DISTRICT GENERAL HOSPITAL

Rebecca Farrands*, Andrew Jacques. Royal Berkshire Hospital, Reading, UK

Background Acute airway compromise is a leading cause of paediatric cardiopulmonary arrest.1 Working in a District General Hospital (DGH) however, critical paediatric airway emergencies remain rare. It is essential that teams remain primed to respond rapidly when the need arises. Effective cross-speciality communication and access to familiar equipment are essential to prevent potentially devastating delays.

Simulation is becoming an increasingly important tool to interrogating current practice, identifying problems and implementing change before patient harm occurs.2

Summary of work We ran an in-situ simulation using a high fidelity paediatric model to test our departmental response to a paediatric airway emergency involving multiple clinical teams. Run in real time, we recorded: the sequence of events; timings of key interventions and inter-team communication; and any equipment issues which arose.

Summary of results We demonstrated a number of avoidable delays which could significantly impact patient safety. The airway was recognised at just 5 minutes however it was 46 minutes until advanced paediatric airway support arrived. A further 14 minute delay occurred following anaesthetic induction, before the airway was secured, as appropriate paediatric advanced ENT airway equipment was not available in the emergency theatre.

Discussion and conclusion The absence of a clear pathway for escalation of paediatric airway concerns caused significant delays. Responders were uncertain who they should contact to rapidly access appropriate help. The greatest risk to impending