IMTs will complete pre and post course self-assessed confidence levels and a thanatophobia scale (Mason and Ellershaw, 2004). Written feedback will facilitate course development. PALL-SIMM could be used nationally for IMTs and other multi-professional team members. PALL-SIMM could provide an efficient and effective way of improving training and patient care.

REFERENCES

P47 PRE AND POST SIMULATION PERCEIVED ANXIETY AND HEART RATE CHANGE IN RESIDENTS DURING MANAGEMENT OF A FAILED AIRWAY IN OBSTETRICS

Sree Kumar EJ, *Makani Purva*. 1Sri Ramachandra Institute Of Higher Education And Research, Chennai, India; 2Hull University Teaching Hospital, NHS Trust, Antilady Road, UK

Introduction Immersion in simulation scenarios is usually measured by subjective questionnaires of self-reported anxiety levels. We present a novel method of measuring immersion, objectively using the surrogate marker of heart rate changes.

Summary of work Nine anaesthesiology residents wearing a heart rate monitoring watch underwent a simulation scenario of a difficult airway situation during Caesarean section. Pre and Post simulation questionnaires was provided for self-reported anxiety levels. The residents were assessed based on a preformed check list and debriefed by two experienced anaesthesiologists.

Summary of results The median heart rate was 88 bpm pre simulation (PrS) (± 12.05 bpm) and post simulation (PoS) was 96 bpm (Standard deviation ± 9.83) [p = 0.004]. The median self-reported anxiety scales in both PrS and PoS was 3 with SD of ± 0.7 and 0.5 respectively (p=1). There was no correlation between PrS and PoS perceived anxiety and heart rate changes (R2 = 0.01 and 0.13 respectively).

Discussion Studies suggest that a higher degree of immersion in a simulation scenario are more likely to improve memory and learning. However, increased perceived stress may also produce underperformance and scar the participant, negatively influencing further engagement with simulation programmes.

Therefore, it is important to measure stress and various methods including heart rate variability, salivary cortisol and blood pressure have been used but these have been found to be intrusive methods, which could themselves reduce the immersion in the scenario. We believe that a watch with heart rate monitoring ability could be a less intrusive measurement of stress. It is interesting to note that the self-reported anxiety scores pre and post simulation did not match the heart rate changes which were statistically significant suggesting that there was some stress although perhaps not acknowledged by the participants.

Conclusion Self-reported anxiety scores may not be an accurate measure of true immersion. Further work may be needed to develop a watch to measure stress during simulation.

P48 PAST (PAEDIATRIC SIMULATION TRAINING) TO THE FUTURE!!!

1Sri Ramachandra Institute Of Higher Education And Research, Chennai, India; 2Hull University Teaching Hospital, NHS Trust, Antilady Road, UK

Introduction Immersion in simulation scenarios is usually measured by subjective questionnaires of self-reported anxiety levels. We present a novel method of measuring immersion, objectively using the surrogate marker of heart rate changes.

Summary of work Nine anaesthesiology residents wearing a heart rate monitoring watch underwent a simulation scenario of a difficult airway situation during Caesarean section. Pre and Post simulation questionnaires was provided for self-reported anxiety levels. The residents were assessed based on a preformed check list and debriefed by two experienced anaesthesiologists.

Summary of results The median heart rate was 88 bpm pre simulation (PrS) (± 12.05 bpm) and post simulation (PoS) was 96 bpm (Standard deviation ± 9.83) [p = 0.004]. The median self-reported anxiety scales in both PrS and PoS was 3 with SD of ± 0.7 and 0.5 respectively (p=1). There was no correlation between PrS and PoS perceived anxiety and heart rate changes (R2 = 0.01 and 0.13 respectively).

Discussion Studies suggest that a higher degree of immersion in a simulation scenario are more likely to improve memory and learning. However, increased perceived stress may also produce underperformance and scar the participant, negatively influencing further engagement with simulation programmes.

Therefore, it is important to measure stress and various methods including heart rate variability, salivary cortisol and blood pressure have been used but these have been found to be intrusive methods, which could themselves reduce the immersion in the scenario. We believe that a watch with heart rate monitoring ability could be a less intrusive measurement of stress. It is interesting to note that the self-reported anxiety scores pre and post simulation did not match the heart rate changes which were statistically significant suggesting that there was some stress although perhaps not acknowledged by the participants.

Conclusion Self-reported anxiety scores may not be an accurate measure of true immersion. Further work may be needed to develop a watch to measure stress during simulation.

Recommendation Consideration should be given to measuring stress levels of learners routinely during simulation teaching to gauge the immersion of the scenario and its impact on the performance of the learner.

REFERENCES